ScriptPhD » Lasers https://scriptphd.com Elemental expertise. Flawless plots. Mon, 21 Sep 2015 23:25:24 +0000 en-US hourly 1 https://wordpress.org/?v=4.3.1 From The Lab: A Future Barely Glimpsed https://scriptphd.com/from-the-lab/2010/10/03/from-the-lab-a-future-barely-glimpsed/ https://scriptphd.com/from-the-lab/2010/10/03/from-the-lab-a-future-barely-glimpsed/#comments Mon, 04 Oct 2010 00:39:08 +0000 <![CDATA[Clayton Stearns]]> <![CDATA[From the Lab]]> <![CDATA[Interview]]> <![CDATA[Physics]]> <![CDATA[Controlled fusion]]> <![CDATA[energy]]> <![CDATA[Fusion]]> <![CDATA[Lasers]]> <![CDATA[National Ignition Facility]]> <![CDATA[Nuclear Fusion]]> <![CDATA[physics]]> https://scriptphd.com/?p=2599 <![CDATA[You can always tell you’ve gone too far when you reach the wind farms. They populate the barren wastes of California’s northern interior, rows of them spinning atop camel-haired hills starved of moisture to slake the thirst of the Los Angeles glitterati. These motionless pinwheels are an ironic green afterthought to the ecological disaster that … Continue reading From The Lab: A Future Barely Glimpsed ]]> <![CDATA[
A giant laser chamber being attended to by a scientist at Livermore's National Ignition Facility.

You can always tell you’ve gone too far when you reach the wind farms. They populate the barren wastes of California’s northern interior, rows of them spinning atop camel-haired hills starved of moisture to slake the thirst of the Los Angeles glitterati. These motionless pinwheels are an ironic green afterthought to the ecological disaster that embraces the Interstate-5 freeway: now that we’ve created the dust bowl we may as well use the wind to power our air filters. There’s more than wind and dust out here. This is where they put the kinds of facilities the government doesn’t want people snooping around in. Lawrence Livermore National Laboratory is one of them—a secretive development center for our nation’s nuclear arsenal during the Cold War. Here in Livermore, the world’s finest physicists are on the verge of a breakthrough that could power entire cities on a bathtub full of water. The National Ignition Facility, also known as the world’s largest laser, is on the cusp of achieving the first break-even nuclear fusion reaction. NIF is the U.S. Department of Energy’s Sagrada Familia. If successful, the four billion dollar facility will be the first ever to demonstrate Ignition: a fusion reaction that releases more energy than was put into it. The energy, national security, economic and environmental ramifications for the United States, if not the world, would be staggering. ScriptPhD.com’s Stephen Compson gained ultra-exclusive access to the normally reclusive facility, including tours, interviews, and a peek at the lasers that could hold the key to the United States’s global rebirth. With nuclear fusion on the brink of break-even, Stephen recounts we tour the world’s next scientific revolution.

The Photon Valley

Livermore is not so much a city as it is a byproduct of the lab at its center. This small suburban community lies halfway between San Francisco’s Bay Area and the Interstate 5 that allows truckers a north-south passage between the “Two Californias.” They call it The Photon Valley, the world capital of laser technology and all things light-related. Moth-like high-tech subcontractors orbit the facility’s perimeter. Charon Sue Wollard is Livermore’s second Poet Laureate. Her poem Steller Gest hints at the secrets locked away in the cathedral of optics:

“We fumble in our mundane quests
amid the shadows of the Earth
while a future barely glimpsed
is in a chamber being birthed”

I check into a room that smells like a Pine-Sol explosion and cruise the two main drags looking for a meal. A pretty girl takes my order at a pizza place, and I realize for the first time what a physics town this truly is. Her eye shadow has been cross-sectioned into bandwidths, showing five different colors on each eyelid. It is a cosmetic display of the visible light spectrum. She smiles and asks if I’d like a beer.

Fusion is the process by which two atomic bodies, driven together by an overwhelming force, merge to become one heavier nucleus. It is the reverse of fission, the splitting process that gave us the atomic bomb and the conventional nuclear reactor. An atomic act of coupling, fusion powers our sun and every other light in the night sky. At the National Ignition Facility here in Livermore, scientists and engineers stand at the threshold of tapping into that process to create a limitless supply of clean energy. When the stars burn out, we’ll make our own.

Nuclear fusion results when two elementary particles collide and combine or fuse to make, even temporarily, a new particle. Illustrated above, Tritium, a heavier form of the hydrogen nucleus, collides with another form of the hydrogen nucleus Deuterium to form a new particle. The fused particle is not chemically stable, and quickly decays via the split decay mode into a neutron and a helium nucleus (also known as an "alpha" particle) and energy. Here, energy is the ultimate holy grail of the fusion process.

The Birth of a Star

The car is completely covered in bird crap. This isn’t just one or two droppings caked onto a dirty hood, but a carpet-bombing by a flock of irritably-boweled miscreants. Lynda, the public affairs officer assigned to chaperoning me through the facility, smiles apologetically and gestures toward the culprits in the dense trees that loom over the parking lot.

Like a quiet family home in mid-Los Angeles, the Livermore Lab hides from prying eyes with a protective wall of foliage that makes it look more like a nature preserve than a nuclear weapons facility. But behind the trees they have plenty of barbed wire and guards armed with assault rifles. I finger the clearance pass with my photo on it and thank her for the souvenir. She looks puzzled, “You won’t be allowed to keep it.” Bruno Von Wonterghem is exactly the sort of Germanic super-scientist you’d imagine running operations at the world’s largest laser facility. His accent lends an easy everyday quality to words like laser, optics, and Neodymium. He has the propensity to trail off into a mumble that could fill an entire page, like he’s been talking about the laser’s attributes merely for his own benefit. Bruno has been working on laser systems at the lab for almost two decades. Every time I ask a question this strange light comes into his eyes, as though he’s realizing for the first time that there are people in this world who don’t know about the National Ignition Facility.

Outside of the National Ignition Facility. Credit: Lawrence Livermore National Laboratory.

From the outside, the building doesn’t quite look real. It’s glossy, like one of those photos a developer might put up in front of a vacant lot to convince people that something could be built there. I’ve been trying to get into this facility for over a year, and to my disappointment it looks exactly like the pictures. Most of the facility’s iconic equipment is on display in the front lobby, and the walls throughout are lined with posters explaining how everything works. The whole thing screams field trip, and I’m starting to wonder if there is actually any science that takes place here. Then they show me the laser bays.

Laser Bay 1, commissioned in 2007, at the National Ignition Facility. Credit: Lawrence Livermore National Laboratory.

Every article you will ever read about the National Ignition Facility measures the size of its laser bays in terms of football fields (four). It’s difficult to get a feel for the scale from the picture, because this is only one of two laser bays and what you don’t realize looking down on it is that the whole system is suspended a story above the ground, putting us three stories up. They do that because any replacement modules have to be loaded from underneath in pre-assembled clean rooms so that any outside particles will fall out of the system.

The laser bay transporter, an automated guided vehicle, is used to install canisters containing amplifier slab cassettes, known as line replaceable units, into the main amplifier frame assembly units. Credit: Lawrence Livermore National Laboratory.

After giving me a minute to ogle, Bruno clears his throat. “The Facility is essentially an energy concentrator in time and space. It takes about sixty seconds to charge up the capacitor bank with six megawatts, but the laser releases that energy in a very short amount of time: billionths of a second. Those six megawatts are concentrated by over fifteen orders of magnitude, more power than the entire United States electrical grid.” The cool thing about lasers is that they have an unlimited threshold for delivering power. Photons, the packets that physicists use to quantify light, occupy no space, so you can pack an unlimited number of them into as focused a path as your lenses allow.

The charge process concentrate the lasers through time, and the lenses concentrate them through space. Each of the tubes acts like a telescope, converging NIF’s 192 beams onto a single capsule the size of a vitamin, gaining another nine orders of magnitude in the process to create temperatures hotter than the inside of the sun.

This artist's rendering shows a NIF target pellet inside a hohlraum capsule with laser beams entering through openings on either end. The beams compress and heat the target to the necessary conditions for nuclear fusion to occur. Ignition experiments on NIF will be the culmination of more than 30 years of inertial confinement fusion research and development, opening the door to exploration of previously inaccessible physical regimes. Credit: Lawrence Livermore National Laboratory.

At the molecular level, heat causes vibration. The hydrogen ions in the fuel capsule are both positively charged, so they magnetically repel one another. However, the supercharged laser creates a perfectly symmetrical layer of plasma around the target. There’s nowhere for the ions to run, and as they heat up and accelerate to over a million miles per hour, the two cores inevitably fuse to become a hydrogen atom, releasing some of their mass as energy in the form of neutrons. Each laser bay contains 96 beams, one in each steel tube. Thick black high-voltage cables snake along the outside delivering power to the amplifiers. The tubes are filled with Argon gas because air reacts with lasers and impedes their progress. Aside from the amplifiers, the lasers also pass through pink slabs of neodymium that add juice to the discharge. The shot bounces through the entire array four times before it enters the switchyard into the target bay.

This is a laser glass slab in a line replaceable unit (LRU) that was assembled in the Optics Assembly Building cleanroom. An LRU is a large metal frame that holds various types of lenses, mirrors or glass that can be easily installed in a beamline or removed for maintenance. This glass slab LRU will be installed between two flashlamp cassettes that fire as the laser beam passes through, causing the beam to pick up energy from the specially treated glass on its way to the target chamber. Credit: Lawrence Livermore National Laboratory.

This is the world’s largest optical system. There are over 70,000 large optical controllers and 30,000 smaller optics. As we look over it all from the third floor, Bruno sniffs, “If you could look through all these tubes and strip away all this steel, you would find a sea of optical elements. It would be beautiful. Right now, it just looks like tubes.”

Between the Conception and the Creation

NIF laser pulses are born in the master oscillator room, in which a compact laser oscillator generates low-energy (a few nanojoules) laser pulses. Credit: Lawrence Livermore National Laboratory

Every shot starts in the Oscillator Room, which is a somewhat disappointing set of server-like cabinets containing the three oscillators that send out the initial pulse to the preamplifiers. This starting pulse is only a billionth of a joule, or 1/160th the kinetic energy of a flying mosquito. A fairly humble beginning for a star’s birth. They use the three oscillators in tandem to fine-tune the timing of the pulse down to a few trillionths of a second. The oscillators run constantly, but only one of these pulses will enter the amplifiers to begin powering up for a shot. A large red counter keeps track of all pulses that pass without notice through the fiber-optics, unable to reach their full potential in the adjacent laser bays.

Physicists John Emmett (left) and John Nuckolls were the key Lawrence Livermore National Laboratory pioneers in laser and fusion science and technology. Emmett co-invented the multipass laser architecture still in use today. Credit: Lawrence Livermore National Laboratory.

In 1957, John Nuckolls began investigating peaceful applications of nuclear weapons technology. He proposed a novel scheme: the implosion of a Deuterium-Tritium (hydrogen isotopes) fuel capsule inside a tiny holhraum driven by an external energy source (refer to above graphic). This is the same scheme NIF uses today, but at the time when Nuckolls proposed it the laser had not yet been invented, so he considered other exotic power sources like particle accelerators, plasma guns, and hypervelocity pellet guns, which sound suspiciously like glorified BB guns.

The reaction that takes place at NIF today is almost identical to the one Nuckolls designed in the 60s, but the physicists needed a laser system capable of generating a pulse hotter than the core of our sun to achieve ignition. First they built the SHIVA laser, named for Oppenheimer’s proclamation that he had become the destroyer of worlds after unveiling the atomic bomb. SHIVA was followed by NOVA, NIF’s predecessor and the first laser system Bruno worked on at the facility. In late 2009, almost fifty years after the idea was conceived, NIF successfully demonstrated the temperatures necessary for energy gain ignition. “It was so much bigger than any of us ever imagined,” Bruno reflected. “When we bring in the original scientists to look at the target bay, they sort of look around in awe and say, ‘We can’t believe this is what we asked for.’”

The interior of the NIF target chamber. The service module carrying technicians can be seen on the left. The target positioner, which holds the target, is on the right. Credit: Lawrence Livermore National Laboratory
On March 10, 2009, at 3:15 a.m., a 192-beam laser shot delivered 1.1 million joules of ultraviolet light to the center of the target chamber - the first time any fusion laser has broken the megajoule barrier (a megajoule is the energy consumed by 10,000 100-watt light bulbs in one second). Credit: Lawrence Livermore National Laboratory.

The target chamber is a 10-meter diameter aluminum sphere with laser tubes sprouting from its surface. From the outside, it looks like one of those alien objects from Contact or Sphere. It spans three stories of the facility, so you can only ever look at it from above or below. We stand on the third floor watching a crew of workers install some newly hardened diagnostic equipment. They’ve spent the past six months preparing the target chamber to absorb the massive amount of energy released by the fusion reaction. The entire chamber is now surrounded by a concrete and boron barrier two meters thick. In the LIFE facility, a commercial power plant designed to actually generate electricity, the neutrons will be absorbed by a mantle of liquid salts that transfer their kinetic energy to heat energy which drives a conventional steam generator. However, because NIF is an experimental facility where they actually need to observe the reaction, its physicists were presented with the challenge of preparing cameras that could withstand the bombardment, since neutrons lay waste to electronics.

The density of the imploding target is so high that normal x-rays can’t penetrate the implosion’s surface, so they concentrate four x-ray beams to over a Petawatt, which is a quadrillion watts (yeah, real number). The reaction itself is only a tenth of the size of a human hair, and it boggles even the scientists who work there that they have an x-ray powerful enough to observe it. They call this camera Dante, “because it looks into the mouth of hell.” Despite the incredibly powerful forces at work, Inertial Confined Fusion is safer than any of the power-generating technologies that have preceded it. The key thing to remember is that the reaction is an implosion, not an explosion. If anything goes wrong, the whole thing collapses on itself and nothing happens. The worst thing that can happen is all the fuel gets consumed and we’re out one more capsule. There’s no possibility of a catastrophic meltdown like Three Mile Island or Chernobyl. Lynda deals with this line of questioning all the time: “People hear that NIF generates temperatures hotter than the sun and that it creates a miniature star and they wonder how the whole facility doesn’t melt down. But we’re talking about an implosion, with an incredibly small scale, for only a few billionths of a second. It’s no different than a supernova, the physics are all the same, but the scale’s a bit smaller.”

A NIF hohlraum. The hohlraum cylinder, which contains the NIF fusion fuel capsule, is just a few millimeters wide, about the size of a pencil eraser, with beam entrance holes at either end. The fuel capsule is the size of a small pea. Credit: Lawrence Livermore National Laboratory.

Holhraum is the German word for “hollow room.” It has been mostly analogized to a pill capsule, in reference to its size and shape. Its role is to act as an x-ray oven, containing the plasma generated around the target pellet and acting as a mold for the fusion reaction’s symmetry. The holhraum contains the fuel pellet made up of the hydrogen isotopes Tritium and Deuterium. There’s no danger of scarcity with these two elements: Tritium is derived from the relatively common Lithium and Deuterium comes from plain old water. Another advantage to fusion is that there’s no waste created, at all. Everything is consumed by the reaction, leaving behind no toxic radiation or weaponizable elements. In fact, physicists can use facilities like NIF to dispose of the nuclear waste from the previous generation of fission reactors, rendering the arguments about Yucca mountain or blasting it into space completely moot.

NIF's complex operation, alignment and diagnostic functions are controlled and orchestrated by the integrated computer control system. It consists of 300 front-end processors attached to about 60,000 control points, including mirrors, lenses, motors, sensors, cameras, amplifiers, capacitors and diagnostic instruments. The shot director must coordinate all 14 NIF subsystems when preparing for a shot. Credit: Lawrence Livermore National Laboratory

The shot director begins the countdown, and alarms sound throughout the facility. Daylight hours at the facility mostly consist of construction and maintenance work, they fire the lasers at night. There are only twenty people in the facility during a shot, and they’re all here in the control room, but they have the alarms just in case. The countdown is four minutes, which seems like an incredibly long time. Nearly all of the process is controlled by computers, a necessity for the minute level of control required to achieve symmetry. The control room looks a lot like NASA’s Mission Control. They like to hire nuclear submarine captains as shot directors, because of the rigidity in operations requirements. “We can train them with the technical knowledge, but having that operations experience from a submarine where things are going on all around you is essential. There’s a lot of action during a shot, but each one can take up to twelve hours. It’s like loading a new missile every day.”

As we reach the final few seconds of the countdown, I look around nervously. The overhead lights flash, and that’s it. No sound effects, no shaking. I have to ask if it worked. The only noise comes from the physicists next door scrambling to be the first to retrieve the data. Lynda leans over, “When you take the amount of shots fired in an entire year, where each one only takes a fraction of a second, it’s almost like this thing is never really on.”

Countdown to Ignition

The National Ignition Campaign coincides with football season, but the stakes are a little higher. Ignition is the validation of fusion as a viable energy source, the point at which the critics are silenced and the rest of the world scrambles to duplicate the feat. “It’s going to be incredible, standing room only. There’s people lining up around the world that want to be here for that event. Every milestone along the way has been a major event, when we went from two to four lasers it was a major event. Now we have 192. And it’s all leading up to the ignition.” The question they must get tired of hearing is: when? “September, October. There’s a few [target] options we have, a plastic capsule, a beryllium capsule, a diamond capsule.” I ask Bruno which one he thinks will do the trick. It’s important not to underestimate the technological perfection required to achieve the symmetry necessary for the ignition. Every aspect of the shot must be analyzed and optimized to an order of precision never before achieved. With all that said, he doesn’t see any reason why the plastic capsule won’t get the job done.

I have to press: “The plastic capsule, that’s going to be the one?” Bruno replies with a tremor in his voice. Like the girl who’s fallen for too many bad boys, he’s been hurt before, “I believe that will be the one, yes.”

Are you ready for some Physics?

The above title sounds a lot more enticing if you sing it to the Monday Night Football theme song. There’s no good reason why I should be allowed into a nuclear weapons lab. I’m nobody, another starving bookworm with a taste for Faulkner and single barrel scotch. All I can surmise is that so far, no-one’s managed to pull this four billion dollar sword from its stone and shove it somewhere that will make the American public pay attention. I’m living proof that they’re desperate. No one I know has even heard of the National Ignition Facility, which quite sadly included the Editor of ScriptPhD.com who sent me there. I’ve spoken with professional engineers and physicists who don’t recognize the name. There’s certainly been plenty of media coverage: the BBC, the Discovery Channel, Wired, Time. People’s ears tend to perk up when they hear something might kill them, but the general public hasn’t had a survival-based reason to pay attention to physics since the end of the Cold War. We know that unruly nations getting access to nuclear weapons is a bad thing, but as to the current state of the field, a nuclear warhead is implicitly bad enough that there’s been no reason to continue following their progress.

Fusion offers us the solution to a problem most people don’t even know we have. The immediacy of it isn’t so clear, but in his excellent BBC Horizons: Can We Make a Star?, Professor Brian Cox paints a grim picture. It’s not possible to give the rest of the world access to even half the electricity that the average American uses without bankrupting all possible means of generating electricity, and in the process laying waste to the environment.

We have to figure out how to generate electricity for the growing population around the world without, as Bruno likes to say, choking ourselves. The actual numbers are sobering, but it’s a subject people don’t like to read about because in the past there’s been no clear solution. Now here we are, being handed that solution on a silver platter by a group of individuals that no one’s heard of who have been working on that solution for the last fifty years. Which only makes the endeavor that much more noble.

The Holy Grail

When I began this trip, I had no idea that I would be making a pilgrimage. Bruno and his co-workers are like stonemasons laying the foundation for a church they will never live to see. It will be at least twenty years before the first commercial fusion reactors come online (skeptics put the time-frame around 2050). John Nuckolls, the man who came up with Inertial Confinement Fusion, is in his nineties. Five thousand people have spent their lives building this facility up to this point. They are the clergy of the modern era, humanity’s most educated class, working selflessly to create a better world. “People want to be here to work on a mission. The goal is really very abstract to many of them, but they’re all motivated by being able to contribute to an event where they can make history. There’s a grand challenge to it, a vast significance in being a part of that.”

Gone are the days when the average American held down a job for the same company his or her entire working life, but many at the National Ignition Facility join the team when they finish their doctorates from the world’s finest universities and work there until they retire. There are fathers who have spent their entire careers working on fusion only to see their son or daughter take up the cause. Remarked Bruno: “We have to think long term. You need technology that can carry you beyond fifty and a hundred years into the future. When you think about your great grandchildren, this is the only solution, the only way that we can survive with the quality of life that we’ve become accustomed to. It is our holy grail.”

The Neutron Age

The achievement of energy gain fusion is one that should fundamentally alter human existence. As technology advances, our quality of life will remain intimately connected with access to cheap, renewable energy. There are existential stakes as well. Fusion is the engine that drives our universe. By achieving Ignition, we begin our mastery of Mother Nature’s own energy source, a force so fundamental that cultures around the world worshiped its daily appearance at dawn. “Every fifty to a hundred years you reach a point where you make a quantum jump in technology. We went from coal in the industrial age to the atomic age in the fifties and now we will reach the neutron age. We can finally see an opening into the energy problem. Within fifty years you could provide a significant fraction of your basic power production from fusion. You can give this to developing countries and bring them into a new century. Suddenly someone with no refrigerator, no microwave will realize what it means to live in the modern age. We have a quality of life here in America that simply cannot be provided around the world with the resources we have. Fusion will make that possible.”

Clean power is only the beginning. Like the technologies that emerged from the Pandora’s box of quantum mechanics, fusion will undoubtedly open up a whole new wave of technological advancement. Every aspect of the National Ignition Facility, from the optics that carry the lasers to the supercomputers that process the data have pushed the limits in their field. Bruno gives me a sly look. “We probably have no idea yet what applications will come from having a neutron source like this.” And thanks to the NIF’s tireless believers, we enter that neutron age this fall.

Stephen Compson studied English and Physics at Pomona College. He writes fiction and screenplays and is currently working toward a Master of Fine Arts at UCLA’s School of Theater, Film & Television.

~*Stephen Compson*~

************************
ScriptPhD.com covers science and technology in entertainment, media and advertising. Hire our consulting company for creative content development.

Subscribe to free email notifications of new posts on our home page.

]]>
https://scriptphd.com/from-the-lab/2010/10/03/from-the-lab-a-future-barely-glimpsed/feed/ 3
Science and Society: A Policy Analysis https://scriptphd.com/media/2010/03/20/science-and-society-a-policy-analysis/ https://scriptphd.com/media/2010/03/20/science-and-society-a-policy-analysis/#comments Sun, 21 Mar 2010 03:25:10 +0000 <![CDATA[Jovana Grbic]]> <![CDATA[Media]]> <![CDATA[Natural Science]]> <![CDATA[Science Policy]]> <![CDATA[Technology]]> <![CDATA[Television]]> <![CDATA[Cloning]]> <![CDATA[CSI]]> <![CDATA[Dolly the sheep]]> <![CDATA[Jurassic Park]]> <![CDATA[Lasers]]> <![CDATA[nuclear power]]> <![CDATA[Policy]]> <![CDATA[STEM]]> <![CDATA[Stem Cells]]> <![CDATA[The CSI Effect]]> <![CDATA[The Manhattan Project]]> <![CDATA[Three Mile Island]]> https://scriptphd.com/?p=1830 <![CDATA[“The fewer the facts, the stronger the opinion.” —Arnold H. Glasgow, American humorist In today’s modern, fast-moving world, large telecommunication and media corporations are playing an ever increasing role in shaping the collective consciousness of society. This development might lead us to ponder what role, if any, traditional pillars of learning such as law, science, … Continue reading Science and Society: A Policy Analysis ]]> <![CDATA[

“The fewer the facts, the stronger the opinion.” —Arnold H. Glasgow, American humorist

In today’s modern, fast-moving world, large telecommunication and media corporations are playing an ever increasing role in shaping the collective consciousness of society. This development might lead us to ponder what role, if any, traditional pillars of learning such as law, science, medicine, literature and art have to contribute to society. How does society absorb these contributions during the ongoing media (and social media) blitz that has transformed how we obtain, process and share information. More importantly, what influence do these contributions have upon society, and what influence does society reciprocate upon these institutions? For our last (and best) post of Science Week, ScriptPhD.com examines the relationship between science and society, and extrapolates social policy and pop culture lessons that could shape and transform that relationship in the future. Please click “continue reading” for more.

Science and Society Influencing Each Other: Nuclear Power

The Three Mile Island nuclear processing facility, located south of Harrisburg, Pennsylvania, United States.

As one examines how modern scientific discovery has affected society in the 20th (and now 21st) Century, no area has had more sociopolitical ramifications than nuclear power. During World War II (1939-1945) scientific advancements in physics led to the development of the first atomic bombs. Their subsequent use helped end the war in the only such use of the weapon in conflict to date. Since the use of two atomic bombs by the United States of America, strongly disapproval has grown of the use of these atomic weapons. The discoveries made during the then-covert scientific team codenamed The Manhattan Project, led by Dr. J. Robert Oppenheimer, ultimately harnessed nuclear power as a plausible alternative source of energy. In France, for example, nuclear power provides over 75% of the country’s energy needs. The United States attempted to expand use nuclear power more broadly decades ago until 1979, when a tragic accident at Three Mile Island occurred. Fears and distrust of both the nuclear power industry and the United States’s nuclear regulatory body, the Nuclear Regulatory Commission (NRC) reached a tipping point. As a result, people didn’t want a nuclear power plant in their backyard, and the building of nuclear plants came to a virtual standstill. The remaining nuclear power plants which would have been built faced fierce opposition by the local and surrounding residents near the facilities.

The confluence of modern events have considerably changed the equation in the decades since. The United States’s involvement in two wars in Iraq, soaring oil prices, a greater public awareness of global warming, and the worst economic crisis since the Great Depression have all combined to influence government

and policy-makers to try nuclear power again. President Obama recently granted more than $8 billion in Federal loan guarantees for two nuclear power plants to be built in Georgia and confirmed his steadfast support of nuclear power as a source of energy. Prior to this, the NRC granted the first license in over 30 years for the construction of a new nuclear power facility in 2006. Despite these developments, environmental and nuclear opposition groups have highlighted the very obvious problem of radioactive waste disposal from nuclear power plants. The future of nuclear power will depend on the interplay of science, technology, policy and how society processes them.

Science Benefiting Society: The LASER

Inside of the National Ignition Facility at Lawrence Livermore National Laboratory in Berkeley, CA. Image ©Jason Madara

Numerous applied scientific discoveries have benefited society in a transformative way via a single product or invention: the telephone, the computer, the internet and, most significantly and ubiquitously, the laser, which has often been called “a solution looking for a problem.” The laser (Light Amplification by Stimulated Emission of Radiation) has garnered no less than five Nobel Prizes in Physics for science discovery and benefits to society. Albert Einstein first theorized about the laser in 1917 in a paper entitled “On the Quantum Theory of Radiation”; it would take 30 years before scientists would prove his laser theories were true! It would take even an even longer amount of time before the many benefits of the laser were realized and applied. The laser has been indispensable to a variety of fields such as medicine (treating skin cancer), entertainment (CDs and DVDs), telecommunications (optic fibers for broadband information delivery), scientific research (mass spectrometers, NASA Laser Sensing Technologies for outer space, and the mother of them all, the National Ignition Facility, to name just a few).

Through the Looking Glass: The Public, Scientists, Perception, and the Media

As in the above examples, it may be relatively straightforward to illustrate how science benefits society or how science and society may impact each other. What is more nebulous is the following: how does society view the scientific establishment as a whole, how do scientists view the public, and does the media influence society with its portrayal of science?

The Pew Research Center for the People and the Press, an independent, non-partisan public opinion research organization, collaborated with the American Association for the Advancement of Science, the world’s largest general scientific society, to publish a 2009 study examining a variety of attitudes towards science. As a profession, “scientist” was ranked third when the public was asked which profession contributes to society’s well being. This trend has been supported in the by the 2004 Harris Poll of most respected professions, which reported that “scientist” ranked first. While the public highly respects the scientific community, however, the study found a lack of reciprocation from scientists towards the public. When scientists were asked “What are some of the problems faced by science,” a staggering 85% believed the public didn’t know very much about science. Initially, one might think a scientist is inherently biased in their response to that question. After all, they have a PhD, ergo expertise, in a scientific field, so naturally, anyone with less knowledge than themselves might be deemed as a person who “doesn’t know very much about science.” Their conclusion is buoyed by a 2010 Science and Engineering Indicators study published by the National Science Foundation, that concluded: “Many Americans do not give correct answers to questions about basic factual knowledge of science or the scientific inquiry process.”. This is a continued source of concern and discussion when it comes to funding schools in the areas of science, technology, engineering and math. President Obama has renewed executive commitment to these areas in the form of the Educate to Innovate initiative, announced in late 2009, that aims to encourage and fund study of science, technology, engineering and math in primary and secondary schools.

The Pew study also found 76% of scientists believed the news media didn’t differentiate between good, solid scientific findings, and findings which were not well supported. This is corroborated by a recent Columbia Journalism Review paper lambasting the media’s accuracy and irresponsibility in the reporting of science during the H1N1 flu crisis. If the scientists are correct in their beliefs, this is a significant problem for our society. People depend on the news establishment, with a notably increasing reliance on the internet, to provide them fair, accurate and unbiased reporting. In addition, because science and technology impacts a growing part of our daily lives, it is particularly important that we receive accurate information. When participants of the NSF’s 2010 Science and Engineering Indicators were asked “Where do you get most of your information about current news events,” 47% responded with television, 22% with the internet, and 20% relied on newspapers as their primary source for news. Though the respondents listed these sources as their primary means of news, in fact, many people obtain news from a concomitant variety of sources, as opposed to selecting only one type of media (TV, internet, newspapers, radio). Forty-eight percent of scientists also believed the media was simplifying scientific findings. Lastly, 49% of scientists believed a major problem for science is “the public expects solutions to problems too quickly.” In a fast-paced, wired society where quick returns are expected (and demanded!), such a belief is not unexpected.

At times, certain types of science, which we will discuss in more depth below, reach the national, and even the world consciousness. In these cases, the discussion of the science itself transcends beyond the laboratory and enters into the realm of society’s popular consciousness in the form of politics, values and lifestyle. As a result, the discussion is transformed from one of science into one of local, state, national policy, and even international policy. When this occurs, the voice of the scientific community is only one factor in the policy decision making process. A society’s collective morality, risk assessment, and value judgment all play a role in shaping policy and, accordingly, science. Social discussion can have an enormous amount of influence on science. An excellent example is the emerging biomedical research area of human embryonic stem cell research, a field still in its infancy. In 2001, after important and considerable national debate at all levels, President George W. Bush banned all federal funding for the creation of any new human embryonic stem cell lines, but allowed researchers to continue their work with the then-existing stem cell lines. As a direct result of this policy, the citizens of California voted in 2004 for a $3 billion program (the California Stem Cell Initiative to publicly fund stem cell research. In addition, some universities began to form their own private foundations for stem cell research. Popular support for human embryonic stem research had changed considerably since President George W. Bush was in office, reaching majority support by the time Senator Barack Obama became the president and lifted the ban. According to the NSF’s 2010 Science and Engineering Indicators report, in 2002 only 35% of the public was in favor of stem cell research, compared to 58% in 2008.

This well-made 2007 video explores the moral/ethical debate of stem cell research, along with the difference between adult and embryonic stem cells:

Despite some of the schisms between public and scientific perceptions of each other, the overwhelming majority of Americans (84%) feel science benefits society. The Pew study also reported some important areas of agreement. When the public was asked to name areas that science has benefited society, 52% mentioned medicine and the life sciences as significant contributions to society, while only 7% of respondents mentioned telecommunications and computers. In line with the public, 55% of scientists acknowledged medicine and the life sciences as the most significant achievements.

Entertainment, Media and Social Influence: Jurassic Park and the CSI Effect

Does the entertainment industry influence society about science? It depends on who you ask, and what type of influence you were asking about. In an academic paper entitled Communicating Health Information Through the Entertainment Media, ER medical advisor Dr. Neal Baer argues that viewers retain a remarkable percentage of messages through medical show plotlines, and have a responsibility to address key issues facing the global population, such as cancer and HIV screening. In another academic paper entitled Simplifying Science: Effects of News Streamlining on Scientists’ and Journalists’ Credibility, Dr. Jacob Jensen of the University of Illinois at Urbana-Champaign shows a strong ability to sway public perception of both science and scientists depending on how it portrays research data and findings. It’s clear that media, movies and television make science memorable to the public, but to what degree do they influence them?

Scientists have used a type of cloning technique called “nuclear transfer” to clone frogs in 1958, and sheep and cattle in the 1980’s, all using embryonic cells. Nuclear transfer is a technique of putting a donor nucleus (the portion of a cell which contains the DNA) into a donor cell which has had its own nucleus removed. Despite these genetics feats, the word “cloning” wasn’t exactly widely used by the public or the media—until 1993, when Michael Crichton’s 1990 science fiction book Jurassic Park was released as a summer blockbuster.

Dolly, the first cloned sheep.

Jurassic Park is about a team of scientists on an island who successfully isolate dinosaur DNA from an insect preserved in amber. The dinosaur DNA is “cloned” into some amphibian DNA, and presto, “cloned” dinosaurs are revived out of extinction on the island. It wasn’t long after the movie was released for people to casually drop technical scientific cloning jargon like the actors in Jurassic Park. Never mind that much of the film’s science isn’t technically possible. It would only be three more years before we would be introduced to a sheep named Dolly—a clone created using nuclear transfer with, for the first time ever, adult stem cells. The news of Dolly spread like wildfire across the world, and a rich and vibrant debate on the ethics of human cloning began. As a result, 15 states in the United States have laws banning human cloning. There are no federal human cloning laws at this time.

* * *

Ask any defense lawyer or trial lawyer if they’ve heard of the CSI Effect, and they’ll answer in the affirmative. Ask them if there is any definitive proof for the CSI Effect in the courts, and the answer becomes a bit more muddled. The CSI Effect is an alleged direct impact on the Unites States court system from interest in the popular fictional CSI television franchise, and the many other forensic science-oriented entertainment programs that it spawned. The fictional CSI entertainment reveals how forensic science is used to catch and convict criminals. In the late 1980s, the U.S. legal courts were just beginning to allow the use of DNA and blood type tests as forensic evidence in court cases. November 1987 was the first time a person in the U.S. was convicted of a crime using a DNA test as evidence. As the technology became less expensive, and the legal system saw the value of such evidence, the use of this forensic evidence became more widespread.

Forensic degrees offered at United States universities from 1993-2007. (CSI premiered in 2001.)

After a decade of CSI and other forensic-themed shows, a significant segment of society feels it knows a fair amount about forensic science and how such evidence is used in the courts. In this fabulous, must-read New Yorker piece entitled Annals of Law: The CSI Effect, law writer Jeffrey Toobin explores the good, the bad and the inaccurate about the effect, from the perspective of both the criminal justice system and the scientists it places a burden on. This is compounded by increased enrollment in forensics degree programs, which has measured exponential growth directly as a result of CSI (see picture on the left). Some trial lawyers feel the so-called CSI Effect places an unfair burden on them by increasing the threshold or level of expectation by which juries expect to see irrefutable proof of a crime, along with the DNA evidence to substantiate it. Defense attorneys feel it causes juries to believe forensic evidence is absolute, and can rarely, if ever, be wrong. (Several examples that this is not the case can be found here, here and here.) The truth is that while some of what CSI portrays is rooted in reality, in many cases the science shown is not accurate (terrific article from Popular Mechanics debunking the many CSI myths can be found here). Rarely does CSI show the numerous errors that commonly occur in a laboratory. In real life, these errors may go unnoticed until a trial, when the opposing side’s expert questions the validity of the method and/or the lab’s findings. Even some of the scientific techniques are portrayed to happen in a significantly shorter amount of time than what is really the case. This is, after all, entertainment. While there is a considerable amount of opinion regarding the CSI Effect, the jury is still out regarding both its existence and what, if any, ramifications there are from it.

NeuroScribe obtained a BS in Biology, and a PhD in Cell Biology with a strong emphasis in Neuroscience. When he’s not busy freelancing for ScriptPhD.com he is out in the field perfecting his photography, reading science policy, and throwing some Frisbee.

~*NeuroScribe*~
*****************
ScriptPhD.com covers science and technology in entertainment, media and advertising. Hire our consulting company for creative content development.

Follow us on Twitter and our Facebook fan page. Subscribe to free email notifications of new posts on our home page.

]]>
https://scriptphd.com/media/2010/03/20/science-and-society-a-policy-analysis/feed/ 0
From the Lab: Dark Energy 101 with Pluto’s "Slayer" https://scriptphd.com/from-the-lab/2009/09/01/from-the-lab-dark-energy-101-with-plutos-slayer/ https://scriptphd.com/from-the-lab/2009/09/01/from-the-lab-dark-energy-101-with-plutos-slayer/#comments Tue, 01 Sep 2009 08:24:54 +0000 <![CDATA[Jovana Grbic]]> <![CDATA[From the Lab]]> <![CDATA[Geeky Gathering]]> <![CDATA[Astronomy]]> <![CDATA[Big Bang]]> <![CDATA[Big Bang Theory]]> <![CDATA[dark energy]]> <![CDATA[Dark matter]]> <![CDATA[Doppler Effect]]> <![CDATA[Hubble's Law]]> <![CDATA[Lasers]]> <![CDATA[physics]]> <![CDATA[Pluto]]> <![CDATA[Universe Expansion]]> https://scriptphd.com/?p=659 <![CDATA[It’s not often that world-renowned scientists crash in the heart of Hollywood to talk about Nobel Prize-winning physics research. But on a recent summer night, the ScriptPhD, along with a handful of lucky astronomy aficionados, was treated to a light show with a side of general relativity. At LA’s famed Laserium CyberTheatre, Yale physicist Charles … Continue reading From the Lab: Dark Energy 101 with Pluto’s "Slayer" ]]> <![CDATA[

It’s not often that world-renowned scientists crash in the heart of Hollywood to talk about Nobel Prize-winning physics research. But on a recent summer night, the ScriptPhD, along with a handful of lucky astronomy aficionados, was treated to a light show with a side of general relativity. At LA’s famed Laserium CyberTheatre, Yale physicist Charles Baltay, also known as the man responsible for Pluto’s demise, captivated a delighted audience with about 10 billion years of physics, starting from the Big Bang to Pluto’s demise. Continuing the physics theme was a visually stunning array of laser pyrotechnics set to the thematically appropriate tune of Pink Floyd’s “Dark Side of the Moon.” For Dr. Baltay’s lecture, entitled “Exploring the Dark Side of the Universe”, and the psychedelic imagery of the world’s most advanced laser light show, please “continue reading” under the jump.


Ivan Dryer, Pioneer of the Modern Laser Light Show

The evening’s festivities were graciously hosted and introduced by Ivan Dryer, founder of the Laserium and a Los Angeles legend in the world of entertainment technology. Mr. Dryer is generally considered to be the father of commercial laser light shows. Starting out as a filmmaker in the 1970s, Dryer transitioned movie lasers used primarily for film effects into a show at the Los Angeles Griffith Observatory under the name “Laserium”. Laserium shows went on to be played in 46 cities worldwide, and were viewed by over 20 million people, eventually gaining recognition as the longest running theatrical attraction in the history of Los Angeles. “I had no idea how popular this would be,” Dryer said. “It was supposed to be temporary and wound up as a career. As many as 20 million people have leaned back and watched the sky light up to music.” What made that experience so popular? Dryer thinks it’s something about the fundamental appeal of light: “The quality of that light triggers something in the brain, I think. It gets into the limbic system” — the central neurological structure where the passions reside — “and stirs things up. The light and the music trigger our deepest emotions.” The light and the music continue at the Laserium’s permanent new cybertheater in Hollywood. Anyone who goes from being an aspiring young astronomer to an aspiring young filmmaker gets the ScriptPhD.com seal of approval!

Dr. Charles Baltay, Yale professor of Physics and Astronomy
Dr. Charles Baltay, Yale professor of Physics and Astronomy

And speaking of astronomers, the audience was treated to a lecture by world-renowned cosmologist (and the man responsible for the astronomical demotion of Pluto), Dr. Charles Baltay. Dr. Baltay, a Higgins Professor of physics and astronomy at Yale University, was born in Hungary and raised in Bavaria shortly after World War II. After relocating to the States, Dr. Baltay received a physics PhD from Yale and taught at Columbia University. What follows is a rare lecture that makes esoteric physics and astronomy approachable and enjoyable to non-scientists and scientists alike, while deftly explaining the sophisticated cutting-edge frontier of the expanding cosmos.

Lecture: Exploring the Dark Side of the Universe with Dr. Charles Baltay

I’ll be talking about the dark side of the universe, but by this I don’t mean Washington politics or the CIA. I’ll be talking about something called cosmology.

The Big Dipper constellation surrounded by star systems.
The Big Dipper constellation surrounded by star systems.

So this is our view of the large-scale structure and evolution of the universe. The first question is the structure. At small scales, the Earth is going around the Sun, the Moon around the Earth, there’s a lot of lumpiness, but when we look at the large scale, it’s very smooth and uniform. The next question is evolution—again, lots of irregular motion at small scales, and at the large scales, it’s pretty much the same as it’s been. Many of you might recognize this picture as The Big Dipper. It’s looked the same to the Greeks, to the Arabs, since recorded history, so our view was that the Universe was really not changing. It’s forever.

The questions we ask in cosmology are: is the Universe really static or is it evolving in some way? What is the age of the Universe? Is it infinite? Is there even a meaning to the age (if it’s forever then there’s no age)? What is the future development of the universe? What is the “stuff” that the Universe is made of?

Let me start by giving you the present view of the Universe. We believe that the Universe is not static but in a state of uniform expansion as an aftermath of the big explosion. This we call the Big Bang model.

We believe that we cannot see most of the “stuff” in the Universe. The picture above of the stars and galaxies is what we call “visible matter”. It turns out that visible matter comprises 1% of the stuff out there. Most of it is dark matter and dark energy, stuff we cannot see and that we don’t know very much about. And we believe that on the largest scales, the universe is very smooth and uniform. We believe that there is such a thing as an age, the time since the Big Bang. And we believe that to be 10-20 billion years. Some people say 13.2 billion [as in photo above], which may or may not be right, but that is a theory.

A model for a smooth large-scale universe, post-Big Bang.  Image courtesy NASA/WMAP Science Team.
A model for a smooth large-scale universe, post-Big Bang. Image courtesy NASA/WMAP.

We don’t know the future of the Universe. It may keep expanding forever, like a big chill, or it may recollapse. Which will happen will depend on the amount and nature of this dark matter and dark energy. Right now we really cannot predict the future until we learn more about these properties. So this is a quick summary and you can now go to sleep for the rest of the lecture. [ScriptPhD note: we highly discourage this. It gets even better!]

To fill in a few details: how do we know all of this stuff? It doesn’t come from religious books, it’s not voodoo science. It started with a guy called Edwin Hubble who invented Hubble’s law. What he noticed is that distant stars and galaxies are moving away from us. The further something is, the faster it’s pushing away. That’s Hubble’s Law in a nutshell: the recession velocity is some constant times the distance. The point here is that the further away things are, the faster they’re rushing away from us.

When Hubble plotted the redshift vs. the distance of the galaxies, he found a surprising relation: more distant galaxies are moving faster away from us. Hubble concluded that the fainter and smaller the galaxy, the more distant it is, and the faster it is moving away from us, or that the recessional velocity of a galaxy is proportional to its distance from us.  Animation and text courtesy Western Kentucky University Department of Astronomy and Physics.
When Hubble plotted the redshift vs. the distance of the galaxies, he found a surprising relation: more distant galaxies are moving faster away from us. Hubble concluded that the fainter and smaller the galaxy, the more distant it is, and the faster it is moving away from us, or that the recessional velocity of a galaxy is proportional to its distance from us. Animation and text courtesy Western Kentucky University Department of Astronomy and Physics.

Now how does he know this? And the key idea here is something called the Doppler Effect. Light is a wave is a wavelength. And the wavelength determines the color. So blue is about 4,000 Angstroms, green is 5,000 and red is about 7,000 [see animated chart above.] The numbers here don’t matter. The longer the wavelengths look like red to your eye, the shorter wavelengths look bluish. We’ve all experienced the Doppler Effect. You’re on one of your beautiful freeways, if a car coming the other way blows their horn, you hear a high pitch and then as they pass it falls to a lower pitch, have you noticed this? [Note: to hear the Doppler Effect, click on the link below.]

Doppler Effect Car Horn

The higher pitch is the shorter wavelength, then they pass you and they’re moving away from you, you get a lower pitch or a longer wavelength. So if the source is approaching the observer, you get shorter wavelengths, meaning towards the blue, so it’s called the Blue Shift. If something is moving away from you, then the pitch drops, you get longer wavelengths, which are redder, so it’s called the Red Shift. This is the whole clue to this [universe moving away faster] business. Measuring the red shift tells you the velocity that’s moving away from you. But how do you measure the red shift?

A wavelength spectrum emitted from a distant star.  The bottom spectrum shows a red-shift effect based on distance.
A wavelength spectrum emitted from a distant star. The bottom spectrum shows a red-shift effect based on distance.

This picture is called a wavelength spectrum. This is a numerical representation of the wavelength of light coming from a distant star. And you notice certain items give you certain colors, like neon is a bluish color, and sodium lights a yellowish. Each of those colors show up as a line [represented by a specific wavelength]. It doesn’t take a rocket scientist to see that this top pattern is the same as that bottom pattern, but it’s displaced in wavelength [because it’s coming from a more distant star]. That’s how we measure the red shift. However much the wavelength is displaced, this tells you the red shift, which tells you the velocity. So what you do is look at a lot of distant stars in the galaxy, which is what Hubble did, measure their red shift from pictures like this, and figure out that the further away something is, the more rapidly it’s moving away.

Why does that mean an expanding universe? Suppose you go to a marathon in your city of choice and as usual you are late to things. So you arrive late and by the time you get there, you see that Sue the leader is 16 miles from the starting line. And she is running at 8 miles per hour. Joe is running at 4 miles per hour, so he only got 8 miles from the starting line. And some loser is only doing 2 miles per hour, so he only got 4 miles away. So if you all start at the same point, the faster you run, the further you get away. And that’s exactly Hubble’s Law [as relates to Universe expansion.] To put it another way: the further something is, the faster it’s running away from us. So that’s all there is to it. Very simple.

Suppose I come late to the marathon and I say to someone, “How long has this race been going on?” [the equivalent being, how old is the universe?] It doesn’t take an astronomer to say, 2 hours. If Sue is running at 8 miles per hour, she’s 16 miles from the beginning, the race has been going on 2 hours. So that’s the age of the Universe. All you have to do is measure how fast the galaxy is running away from us and how far the distance is, and you get the time. So the age of the Universe is the distance to some star divided by its velocity. But we make one big assumption here. That they’re running at a constant velocity. Suppose that Sue was really running faster, but is now getting tired.

Image of a distant supernova taken from the Hubble Telescope.  Insert:  efore-and-after pictures of a high-redshift supernovae discovered by the Supernova Cosmology Project in March, 1998.  Image courtesy of University of California, Berkeley.
Image of a distant supernova taken from the Hubble Telescope. Insert: efore-and-after pictures of a high-redshift supernovae discovered by the Supernova Cosmology Project in March, 1998. Image courtesy of University of California, Berkeley.

So that brings up the next big question: is the expansion velocity of the Universe a constant or not? And you say that the answer is simple, because there is stuff in the Universe, like magnets, people, worms, stuff, gravity is attracted, so if the thing is expanding, gravitational attraction has slowed down the expansion. So we would expect the expansion of the Universe to slow down, to decelerate. And the rate of the deceleration tells you how much stuff there is. The more stuff, the more gravity, the more it slows down. But how do we measure these things? How can you measure what the velocity was in the past, say a billion years ago? If we are looking from Earth at a supernova (that’s an exploding star in the Universe), and let’s say that it was 1022 kilometers away. It takes light 3 billion years to get from the supernova to the Earth. So the light that we see today was really emitted 3 billion years ago. And the properties of that light tell us about the Universe as it was 3 billion years ago, and in particular, the red shift of that light tells you about the extension velocity of the light in the past. By looking at supernovas at different distances, you are indirectly measuring the expansion velocity of the Universe. Distance translates to time in the past, because light travels with finite velocity.

Scientists did this experiment and there was a huge surprise: the expansion velocity was smaller in the past and is bigger now. The Universe is accelerating! It has no business doing that. It cannot possibly do that [based on all the points discussed above]. All the laws of physics, and everything we know say that this cannot be. So this study came from guys at Harvard, so we didn’t believe them, but then people from Berkeley replicated the experiment and we now have to believe it. This is a strange state of affairs. All of the stuff in the Universe attracts gravity, and cannot cause it to accelerate. Scientists are not very smart and savvy, but we’re smart enough not to call the New York Times and say, “We just spent umpteen million dollars and we don’t know what the hell is going on.” So instead, we call the New York Times and say, “We discovered dark energy. What’s dark energy? We have no idea.” But dark energy is something that has to be pausing gravity. So we hypothesized dark energy is pushing the Universe apart and it’s qualitatively different from anything we think about, and it’s dark because we don’t see it. This is kind of where we are currently in this research field.

So we all recognize Albert Einstein, who came up with the Theory of General Relativity. And when you do the calculations and you put everything together, you come to this very startling conclusion: that the visible stuff in the Universe is 1%, and dark matter and dark energy are 99%. So all our physics books, the books in the Library of Congress are, but alas, 1% of the Universe. The rest [of the matter], we know almost nothing about. So the question is, how do we learn more about the age, the history and the future of the Universe? One thing we would like to do is look further back in cosmic time. The experiments we’ve done up until now have only gone back a short time, maybe 1 or 2 billion years. We would like to go back maybe 10 billion years to trace out this expansion velocity. Going back to our earlier example, I see Sue running the Boston Marathon, and I’d like to trace out her velocity from the beginning of the race. If I know that, I can reconstruct the exact age and predict the future. So going back further in time, long ago, means further away, because that is the direction the light is coming. Far away means these supernovas are very faint, so you have to go to space to look for them.

We have proposed a space mission [the SuperNova Acceleration Probe as part of the Joint Dark Energy Mission] to look for these supernovas to take us back further in time. On the other hand, you also need a sample of nearby supernovas to compare [them], and that we have to do from the ground, because they’re relatively bright since they’re close-by, but they are very rare. The ground experiments will give us the baseline supernovas and that is the Palomar Quest Survey which is underway at the Palomar Observatory not far from Los Angeles as a collaboration between our group at Yale and a group at the California Institute of Technology. The SNAP space mission [link above] is a proposal with about ten universities collaborating, and we’ll eventually have to launch one of these Delta-4 rockets in the future [view conceptualized animations of the project and space projections here].

Schmidt Telescope at the Palomar Observatory.
Schmidt Telescope at the Palomar Observatory.
Pictures of the Andromeda Galaxy taken from the Palomar Survey Project.  Image courtesy Palomar Observatory.
Pictures of the Andromeda Galaxy taken from the Palomar Survey Project. Image courtesy Palomar Observatory.

Here is a picture of the Schmidt Telescope that we are using at Palomar and a sample of some of the types of pictures that we are getting, such as the Andromeda Galaxy. But how do we find these supernova explosions? These are exploding stars, they take about two weeks to get to their peak brightness, and they take about six weeks to fade away. So we take one picture and compare it to a picture taken a month before, and then subtract the images to determine the supernova strength [see graphic in supernova picture above]. We have one big nuisance. And that is that in some of the images, you see an object moving over, and circling between the stars. That’s not a supernova explosion, it’s something that’s moving down the solar system. So within the background of the supernova search, are there other planets within our own solar system?

To find objects, scientists take three pictures of a small region of the night sky over three hours and look for something that moves. The many billions of stars and galaxies visible in the sky appear stationary, while satellites, planets, asteroids, and comets appear to move.  These time-lapse images of a newfound planet in our solar system, called 2003UB313, were taken on Oct. 21, 2003, using the Samuel Oschin Telescope at the Palomar Observatory near San Diego, Calif.  Image courtesy NASA and Caltech University.
To find objects, scientists take three pictures of a small region of the night sky over three hours and look for something that moves. The many billions of stars and galaxies visible in the sky appear stationary, while satellites, planets, asteroids, and comets appear to move. Image courtesy NASA and Caltech University.

Back in the 1930’s, before computers, this guy named Dr. Clyde Tombaugh looked for 30 years by eye on photographs to find Pluto. And we’ve now started finding more planets, at least six to date, some that are bigger than Pluto:

An animated gif that shows the three discovery images. The total area of sky shown in the bottom image is equivalent in size to the head of a pin held at arms length. Incidentally, that is how big the Sun would appear from the new planet Sedna.  Image courtesy Caltech University.
An animated gif that shows the three discovery images. The total area of sky shown in the bottom image is equivalent in size to the head of a pin held at arm's length. Incidentally, that is how big the Sun would appear from the new planet Sedna. Image courtesy Caltech University.
A diagram showing the relative sizes of Earth, Pluto, Eris and other distant solar system objects.  Image courtesy Caltech University.
A diagram showing the relative sizes of Earth, Pluto, Eris and other distant solar system objects. Image courtesy Caltech University.

Because of these discoveries, we now believe that the solar system is probably twice as big as we used to think. So this upset people quite a lot and they said, “Either we call these guys planets, or we demote Pluto.” So that’s what happened. We have blood on our hands. Actually, what really happened is that everybody gets to be called a planet, with five inner planets, two giant planets, and four outer planets. And maybe we will find a few more [during the course of the Palomar survey]!

A diagram of the new planetary nomenclature system that includes the newly discovered outer lying planets.

Question and Answer with Dr. Charles Baltay:

How often do you get lucky enough to witness a world-famous physicist answering questions and explaining high-order physics in every day layman’s terms? Not often. Following is the transcript of Dr. Baltay’s post-lecture question and answer session, during which his natural wit often shined through.

How is your work going to address dark energy and dark matter?

Charles Baltay: The approach we have now is to trace out the history of the expansion. And from that we can deduce how much dark energy there is. Of course, a more complete answer would be: take Einstein’s formulas of general relativity and… it gets complicated. But the basic idea is that the expansion history will tell you about the dark energy.

What got Pluto “declassified” when there are other planets that are much smaller?

CB: Well, declassified may not be the right word. It was reclassified as a minor planet, to make the distinction between the giant planets and the minor planets. So it’s an International Astronomical Union, and they spend their days arguing and this is what they came up with.

How do you determine the distance of the planets and supernovas you study?

CB: With great difficulty. Measuring distance is a big problem; that’s a hard thing to do. The reason I keep emphasizing supernovas—there are certain classes of supernovas that we know how bright they are intrinsically. So from the apparent brightness [of those standards] we can judge the brightness. It’s like a car headlight, if you knew how bright it was up close, then you see it from a distance, you could say the light passed off is 1/r2, from the intensity deduce the brightness [and ergo the distance]. And that’s why we pick out supernovas of all the possible things we could look at.

[ScriptPhD note: You must imagine the sassy molassy British girl asking this question—it’s so much more fun!] We know that there’s these lumps of rocks circling the sun. Why does it matter what we call them and is it really a good use of grown men’s time to argue about it?

CB: Well the International Astronomical Union has to have something to argue about. It’s a disappointing thing to argue about. You’re right—there are planets, there are asteroids, there are comets. So they are all things that go around the sun. So people like to classify. Biologists say that there are plants with three leaves on the end, versus five leaves on the end, and they give them names. So that’s what people do.

Sassy Molassy: It’s kind of an old-fashioned way to go about science, isn’t it?

CB: Well, yes. I don’t particularly find it exciting, but that’s my sole resistance to energy balance, whether we have 9 or 10 planets. Who cares?

Are you familiar with Stephen Hawking’s theory that there are singularities that are infinitely large and infinitely small? [Read about the Penrose-Hawking Singularity Theorems here.] And if so, do you believe that that might be an explanation for why there is spin and not just Big Bang thrust?

CB: Well, from what I understand about those theories, none of them encompass repulsive gravity. So dark energy is really different from anything that anyone’s talked about, in that it has repulsive gravity, and that’s what pushes the universe apart. So none of those weird things that people talk about—worm holes and singularities—none of those explain dark energy. We’re looking at something really quite new.

How does dark energy compare with the other forces, like gravity or electromagnetism?

CB: If I knew I’d publish immediately! We just don’t know.

Is there some correlation between the dark energy that you’re talking about and Einstein’s Cosmological Constant which predicts an expansion of the universe based on its properties of space?

CB: Yes. You’ve been reading books, obviously. OK, so let me mention a bit of history. Einstein wrote down his equation [E = mc2] in 1916, without a cosmological constant. He realized that that’s inconsistent with a static universe. In a sense, I can’t take this jacket hanging on this chair and leave it in the air. Gravity will make it fall down. So Einstein, revolutionary as his thinking was, firmly believed that the universe is static. This was before Hubble’s constant. So he said, “How can I fix up my equation?”, he put in this extra term, he called it his cosmological constant, which canceled out the gravitational attraction, and to him it was just an extra term. Then in 1930 Hubble said, “The universe is not static,” and Einstein said, “Oh, the cosmological constant is the biggest blunder of my career.” Now, I don’t know what he meant by that, because it couldn’t be one thing. Maybe what he meant was, “Had I stuck to my guns, and said the Universe cannot be static, I could have become famous!” [laughter] So from 1930 until just a few years ago, everyone used the cosmological constant. It was something that Einstein used to catch up his theory to be consistent with the semi-state universe. But we discovered that the universe is accelerating, maybe the cosmological constant is doing it. So that’s one candidate for dark energy.

Since waves tend to travel through mediums, is dark matter the medium by which light travels through?

CB: No. But how do I know that? I don’t think it is. We don’t know what dark matter and dark energy are. So it’s just the beginning of the story.

Are the experiments you talked about the only experiments happening on dark matter and dark energy?

CB: No. There are at least three or four more experiments being planned by various other techniques. It’s sort of a hot topic. It’s now the holy grail of cosmology. So a lot of people are doing it with different things. Of course we have the best design, but…

Can dark matter exist in a black hole, do you think?

CB: I don’t know. As I said, if I knew I’d publish.

Is there a number associated with Hubble’s Constant, just like pi?

CB: There is a number. It is hotly debated but the general values are described here. It’s not a number like pi, that’s a geometrical number. It’s a number that we have to measure.

What can your space telescope see that the Hubble cannot?

CB: The answer is the following. It’s called field of view. When you pick up a pair of binoculars, sometimes it has a very narrow field of view. And sometimes a big field of view. If you’re trying to find many, many supernovas, you want a wide field of view. The Hubble has a very narrow field of view. So we have to do something better than the Hubble. I’m being very modest today.

Now that we’ve discovered another [planet in the] Zodiac, how does that work with the horoscope? If you were a Leo, are you now a Virgo? [laughter]

CB: That’s beyond my pay scale.

Lights and Lasers and Pink Floyd, Oh My!

The highlight ending of this otherworldly evening was an hour-long bravura of luminescence to the soundtrack of “Dark Side of the Moon” by Pink Floyd. For those that have never experienced a show at this magnificent hidden Hollywood gem, it is, according to People Magazine, “the closest thing to tripping out in inner space.” Check out just a slice of the experience in pictures:

Our complete photographic collection from the show can be found as an extra feature on our Facebook fan page. Please credit all photography to ScriptPhD.com.

It would probably take extraordinary measures to travel far enough to see a distant supernova or nascent planetary body, but if you should find yourself in Los Angeles (or have been living here all your life) and want an exciting, explosive audiovisual scientific excursion, go to the Laserium’s permanent home in the heart of the Hollywood Walk of Fame. Great science amidst the global capital of entertainment… it doesn’t get better than that!

~*ScriptPhD*~

*****************
ScriptPhD.com covers science and technology in entertainment, media and advertising. Hire our consulting company for creative content development.

Subscribe to free email notifications of new posts on our home page.

]]>
https://scriptphd.com/from-the-lab/2009/09/01/from-the-lab-dark-energy-101-with-plutos-slayer/feed/ 2